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Abstract. Automatic bug finding with static analysis requires precise
tracking of different memory object values. This paper describes a mem-
ory modeling method for static analysis of C programs. It is particularly
suitable for precise path-sensitive analyses, e.g., symbolic execution. It
can handle almost all kinds of C expressions, including arbitrary levels
of pointer dereferences, pointer arithmetic, composite array and struct
data types, arbitrary type casts, dynamic memory allocation, etc. It maps
aliased lvalue expressions to the identical object without extra alias anal-
ysis. The model has been implemented in the Clang static analyzer and
enhanced the analyzer a lot by enabling it to have precise value tracking
ability.

1 Introduction

Recently there has been a large number of works on bug finding with symbolic
execution technique. In these works, tracking values of different memory objects
along a single path is a common requirement. Some works get the run-time ad-
dresses of memory objects by actually compiling and running the program [1][3].
These are dynamic techniques. Programs being checked must be instrumented
and linked with an auxiliary library and run. Other works solve the memory ob-
ject identifying problem through various static ways. The simplest approach is
to only track simple variables with names, and ignore multi-level pointers, array
elements, and struct fields. This would surely sacrifice much analysis power.

This paper proposes a memory modeling method that is particularly suit-
able for symbolic execution of C programs. It enables the symbolic execution to
identify and track each memory object precisely. We give algorithms that enable
the mapping from C l-value expressions to memory objects during the analysis.
Thus no separate alias analysis is required.

Memory model is the way that the analysis tool models the storage of the
underlying machine on which the code runs. It is the basis of language semantics
simulation and a key component of static code analysis tools.



Memory model determines how accurately the tool can simulate the language
semantics and thus affects the ability of the tool to detect bugs. Surprisingly,
few papers addressed the memory modeling issue in the static analysis field.

Unlike other high level programming languages, the C programming language
assumes a rather low level memory model and provides extensive kinds of mem-
ory operations, such as multi-level pointers, arbitrary pointer arithmetic, built-in
array and struct data types. Pointers in C can point to arbitrary locations of
the memory, and can be cast freely between different types. All these make it
difficult to simulate the C semantics accurately.

In Section 2 and 3, we introduce two basic memory models which are com-
monly used but have some limitations. In Section 4 we describe our novel memory
model, which can precisely map each l-value expressions to the corresponding
memory object. In Section 5 we describe how to simulate the C language seman-
tics with the new memory model. We give some examples and implementation
in Section 6 and 7. We compare with related works in Section 8 and conclude in
Section 9.

2 Name Binding Model

The name-binding model is the most basic storage model present in the semantics
textbooks. In this model, the computer memory is seen as name-value pairs.
When an assignment expression is evaluated, we bind the name of the variable
on the left-hand-side to the value of the expression on the right-hand-side. While
this model is very common, it is not powerful enough to be used for simulating
the C semantics. Consider the following example:

int x, y;
int *p = &x;
x = 3;
*p = 4;
y = x;

The C language has pointers. In this example, p is a pointer variable that
points to the variable x. The presence of pointers brings the aliasing problem.
The aliasing problem is that two or more names can represent the same storage
location. In this example, *p and x are aliases.

The name-binding model cannot deal with the aliasing problem. When we
modify the value of a name, we should also modify the value of all names aliased
to it accordingly. But in no way can we know the aliases of a name in the name-
binding model.

3 Array Simulation Model

One of the deficiencies of the name-binding model is that it lacks the concept
of memory locations. The pointers in C, however, are invented to manipulate
memory locations.



Zhang proposed an array model for the memory [11]. The motivation of the
array model is simple: intuitively the memory can be seen as a large array. If we
allocate all variables on an array, all operations on variables can be transformed
into operations on corresponding array elements, and most importantly, the array
element indices can be taken as the memory locations for the variables.

The example in Section 2 can be transformed using the array memory model:

Assume mem[] is the memory simulation array.
Memory allocation:
x: mem[1], y: mem[2], p: mem[3]

mem[3] = 1; // p = &x; mem[3] is ’p’,
// 1 is x’s simulation location.

mem[1] = 3; // x = 3;
mem[mem[3]] = 4; // dereference ’*’ means

// we have to nest mem[]’s
mem[2] = mem[1]; // y = x;

The array model is somewhat more powerful than the name-binding model.
It can solve some problems in program analysis [10]. But its disadvantages are
also obvious.

The array model requires that every variable has a fixed position. This can
be achieved as long as we know the exact size of every memory object. Once we
have a memory object of unknown size, such as a variable-length array or a heap
object of unknown size, the array model is unusable.

A slight improvement for the array model is that instead of using a single
large array, we use multiple arrays. Each memory object has a corresponding
array for it. But composite memory objects are difficult to represent in this
model. For example, for object struct array struct s { int d } sa[2];, if we
use a single array to represent it, it still has the same weakness as the single
array model. If we use multiple arrays to represent it, we will lose the hierarchy
relation among memory objects.

4 Region Based Ternary Model

Formal semantics models program state with two mappings [8]: a variable envi-
ronment that associates a location with each variable and a store that associates
a value with each location. Formally, we define a variable environment Env as
a mapping of

Env = V ar → Loc

where Loc is a set of locations. A store is the mapping of

Store = Loc → V alue

The name-binding model in Section 2 lacks the concept of locations. The
array model in Section 3 does have the concept of locations. It uses concrete



integers to represent locations. This concretization of location limits the appli-
cability of the array model.

In this section we develop a new representation of locations: regions. A region
is an abstract chunk of memory corresponding to an lvalue expression in the C
programming language.

According to the C standard [5], an lvalue is an expression with an object
type. That is, an lvalue expression has an associated memory object. We use an
abstract region to represent this memory object.

Thus in our region based memory model, every lvalue expression should
have a corresponding region. Furthermore, lvalue expressions indicating the same
memory object should have the same region corresponding to them. Next we
describe the way to get the region associated with an lvalue expression.

4.1 Region Hierarchy

We define several kinds of regions. For explicitly declared variables, we have
VarRegion identified by the variable declarations. Every variable has a unique
VarRegion associated with it.

If the variable is of array or struct type, it has subobjects called element
or field. To represent this hierarchy between memory objects, we introduce the
concept of subregions. A region can be the subregion of another region. There
is a super region pointer pointing to the super region of a subregion.

For array elements, we have ElementRegion with its super region pointer
pointing to its array region. Likewise, for struct fields, we have FieldRegion
with its super region pointer pointing to its struct region. ElementRegions are
identified by their array regions and the indices. FieldRegions are identified by
their struct regions and the field declaration.

In C, there are three kinds of storage classes: local (stack), global (static),
dynamically allocated (heap). We also have a MemSpaceRegion for this concept.
There are three MemSpaceRegions for stack, heap, and static storage respec-
tively. All local variables have the stack MemSpaceRegion as their super region.
All global variables have the static MemSpaceRegion as their super region. All
dynamically allocated objects (mostly by malloc()) have the heap MemSpaceRe-
gion as their super region.

In static analysis, we sometimes would have symbolic values. For example,
we assume function arguments and global variables holds symbolic values at the
entry of the function. If the symbolic variable is a pointer, it may point to some
unknown memory block. For this case, we have SymbolicRegion for representing
the memory block pointed to by the symbolic pointer. SymbolicRegions are
identified by the symbolic pointer values that point to them.

4.2 Region Properties

Besides storage classes, memory objects have extents, or sizes. Some objects’
extents are explicit. For example, a char variable has the extent of one byte. But



dynamically allocated objects can have various extents. We record this infor-
mation with a region-extent mapping from the object’s associated region to its
extent. The extents can be in various forms: concrete integer value or symbolic
unknown value.

Memory state is modeled by the bindings of the regions. There are two kinds
of bindings: direct binding and default binding. After an assignment expression,
like x = 3;, we set the direct binding of region of x to 3. Default binding is
usually set on super regions. If a subregion has no binding, then it could use
its super region’s default binding as its value. For example, after function call
bzero(buf), we can set the default binding of the region pointed to by buf to 0.
Without default binding, we have to set each element of that region to 0, which
is prohibitively expensive for large arrays.

4.3 Region Views

The C programming language permits arbitrary conversions between types of
pointers. This poses great difficulty to static analysis tools.

Consider the following code snippet:

void *p = malloc(10);
char *buf1 = (char *) p;
buf1[0] = ’a’;

int *buf2 = (int *) p;
buf2[0] = 0;

char c = buf1[0];

This is a contrived example. But the code pattern is fairly common in system
programs. Programmers often allocate a generic block of memory, then cast it
to different types for different uses. How do we deal with such (ab)uses of the C
type system?

The essence of this problem is that in C we can have typeless generic chunk of
memory. In the code example above the dynamically allocated memory pointed
to by p is such a chunk of memory. The later casts from it to char* and int* can
be interpreted as installing “views” to it. When it is operated by pointer buf1,
it is viewed as a memory block of type char. When it is operated by pointer
buf2, it is viewed as a memory block of type int.

We set up a region view mapping from a region to its various views: some
anonymous typed region. Casting a generic block of memory to some type is
equivalent to adding a new view to the block of memory. We create an anonymous
typed region to represent the view. Later when the generic memory block is cast
to another type, a new anonymous typed region is created to represent this new
view. The idea is illustrated in Figure 1.

A region can have multiple views simultaneously. But only one view can be
in effect at a time. When the region is operated on by one view region of it, the
information associated with its other view regions must be invalidated.



Fig. 1. Anonymous typed region illustration. Region region p is the generic memory
block pointed to by p. Region region buf1 is the same memory block with type char.
Region region buf2 is the same memory block with type int. Regions buf1[0] and buf2[0]
are the ElementRegions on regions region buf1 and region buf2.

Returning to the example, after expression buf1[0] = ’a’;, buf1[0] has
value ’a’. But after expression buf2[0] = 0, we not only set the value of
buf2[0] to 0, but also removes the binding for buf1[0]. When c is assigned
buf1[0], we can spot that buf1[0] is an undefined value.

5 Simulation of C Semantics

With the region based memory model, we can simulate the C semantics precisely.
We still use the semantics model in Section 4. But we extend it as follows.

The program state is modeled by two mappings: Environment and Store. We
define Environment as a mapping from expressions to values:

Env : Expr → SV al

where Expr is an element of C expressions. SVal is some kind of abstract
values, which we will describe in Section 5.1. The Store is defined as a mapping
from Regions to values:

Store : Region → SV al

where Region is the abstract representation of memory objects.

5.1 Abstract Values

We divide the values occurring in the symbolic simulation into two classes: lo-
cations loc and non-locations non-loc. A loc can be a region or unknown. loc
represents an abstract memory location. Pointers in C all have loc values. The
rests are non-location values non-loc. A non-loc can be a concrete integer, a
symbolic integer, etc.



5.2 l-value and r-value

The C programming language standard [5] classifies expressions into lvalue and
rvalue. Expressions referring to objects are lvalue expressions. The rests are
rvalue expressions. To evaluate expressions, we have to distinguish between an
expression’s l-value and r-value. We define an expression’s l-value to be the
memory location of its associated memory object. An expression’s r-value is the
value associated with the memory object if the expression is an lvalue expression
or the semantic value if the expression is not an lvalue expression.

Note that lvalue expressions have both l-value and r-value. Non-lvalue ex-
pressions only have r-value, i.e., their semantic value. l-value can only be locs,
while r-value can be both locs and non-locs. For example, *p’s r-value is a loc.

5.3 Evaluation Rules

In this section we give some rules of evaluation of C expressions. We define
some notations: l-value(e) returns expression e’s l-value, which is a loc. r-value(e)
returns expression e’s r-value, which is a loc or non-loc. VarRegion(v) return the
unique region associated with variable declaration v. ElementRegion(r, i) returns
the unique region associated with the i’th element of array region r. Similarly,
FieldRegion(r, f) returns the unique region associated with the f field of struct
r. Store(loc) returns the value associated with location loc.

Evaluation rules for main kinds of expressions of C are specified in Table 1.

Table 1. Evaluation rules for C expressions.

l-value r-value
constant n N/A n
variable x VarRegion(x) Store(l-value(x))
array a VarRegion(a) N/A
a[e] ElementRegion(l-value(a), Store(l-value(a[e]))

r-value(e))
s.d FieldRegion(l-value(s), d) Store(l-value(s.d))
p->d FieldRegion(r-value(p), d) Store(l-value(p->d))
&expr N/A l-value(expr)
*expr r-value(expr) Store(r-value(expr))
alloca(n) N/A AllocaRegion(n)
malloc(n) N/A MallocRegion(n)

The region-base memory model supports almost all kinds of C expression se-
mantics: arbitrary level pointer, composite struct and array data types, dynamic
memory allocation, and symbolic pointer.

For pointer arithmetic, we assume that it only happens to element regions.
We get the index of the element region, apply the offset to it, and get an element
region with the new index.



For dynamically allocated memory, we create a MallocRegion with the size
and an execution counter to differentiate memory chunks allocated in the same
statement.

Let us look at an example showing how the evaluation rules are applied.
Consider code snippet:

struct s1 {
int d;

};

struct s2 {
struct s1 *p;

};

void foo(void) {
struct s1 data;
struct s2 *sp;
int a[2];

sp = malloc(sizeof(struct s2));
sp->p = &data;
sp->p->d = 3;
a[1] = data.d;

}

After we have processed the three variable declarations in function foo, we
have program state shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 undefined
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
When processing the malloc statement, we will have a new region in the

program state. The updated program state is shown as follows, whereMallocReg
represents the memory region allocated by malloc().

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 undefined



Next we process statement sp->p = &data;. Evaluating expression &data
requires the l-value of data, which is region 1. Then we get the r-value of sp,
which is region 7. getFieldRegion(region7,p) returns region 8. The updated pro-
gram state is shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1
Next we process statement sp->p->d = 3; Similarly we get the r-value of

sp->p, which is region1, and the l-value of sp->p->d, which is region2. The
updated program state is shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 3
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1
Then we process statement a[1] = data.d;The l-value of data.d is region2,

then we get its r-value 3. The l-value of a[1] is region 6. The updated program
state is shown as follows:

Expression Regions Values
data region 1 N/A
data.d region 2 3
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 3
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1
From the above example we can see that all memory objects are represented

unambiguously, and their corresponding regions are computed on the fly with
little overhead. The region hierarchy is shown in Figure 2.

6 An Example

In this section we use an example to show the power of the region-base memory
model. Consider the following code snippet.



Fig. 2. The final memory region hierarchy. The arrow points to the super region.

struct s { int data[2]; }
void f(struct s buf) {
1 int i = 3, *q = NULL;
2 struct s* p;

3 if (buf.data[1] == 1)
4 q = &i;

5 p = &buf;

6 if (p->data[1] == 1)
7 p->data[0] = *q;

8 return;
}

In this code, if we do not track the value of the struct field buf.data[1],
we would have a path leading to the NULL pointer dereference of q at line 7:
1,2,3,5,6,7,8.

With the region memory model, we can precisely know that buf.data[1] and
p->data[1] refer to the identical memory object. Thus the path condition along
the previous path cannot be satisfied: buf.data[1] cannot be simultaneously
equal and unequal to 1.

The region hierarchy and storage mapping is shown in Figure 3. When
buf.data[1] is evaluated, we get the region associated with buf, buf.data,
buf.data[1] respectively. Then the value of buf.data[1] is retrieved, which
is a symbolic value $1. When p->data[1] is evaluated, we first get p’s rvalue,
which is the memory region of buf. Then along the same way, we get the value
for buf.data[1], which is the symbolic value $1.

The for path 1,2,3,5,6,7,8, we get path condition:

$1! = 1 ∧ $1 == 1,

which cannot be satisfied. There will be no false alarm for the NULL pointer
dereference of q at line 7.



Fig. 3. The region hierarchy and storage mapping. Squares represent memory regions.
$1 is the symbolic value of buf.data[1]

7 Implementation

The region based memory model is fully implemented in the Clang analyzer [2].
Clang is a new C, C++ and Objective C front-end for the LLVM [7] compiler.
The static analyzer is an official part of Clang that find bugs in C and Objective-
C programs. The second author of this paper is the original architect of the static
analyzer core [6]. The analyzer has very good modularity. It is designed in such
a way that main components can be swapped in and out. Basically it has the
following components:

– The core engine, driving the analysis through the program in some order.
– State manager, managing the simulated program states.
– Constraint manager, recording and solving path conditions collected along

a program path.
– Store manager, modeling the program storage.

The region based memory model is implemented as the region store manager
in the tool. It adds the full field sensitivity to the analysis.

An implementation feature that is worth mentioning is the lazy binding tech-
nique we employed. It can be best illustrated by an example. Consider code
snippet:

for (...) {
...
if (...) {

L: int buf[8096];
}

}

As we are using the region based memory model, theoretically we have a
separate region for each of the array elements on line L. Since buf is a local
array, we have to initialize all of its elements to have value undefined. Because
we could have multiple paths leading to the definition of buf, we have to initialize
its 8096 elements multiple times. This proved very time consuming. Moreover,
few of the elements are actually used during later analysis.



To solve this problem, we switched to an implementation that employed lazy
initialization. We do not initialize any variables. Instead, we compute their initial
value the first time it is used according to their storage classes. This optimization
reduced the analysis cost dramatically.

8 Related Work

Hampapuram et al. used a region-based memory model in their work [4]. Our
model is different than theirs in various ways. The main feature of our model is
the region hierarchy, which plays an important role in tracking and distinguishing
memory objects and reasoning about their relations.

Saturn [9] is a general framework for building precise and scalable static
error detection systems. It models program operations with Boolean satisfiability
(SAT) techniques down to the bit level. Pointers in Saturn are modeled with
Guarded Location Sets (GLS). The GLS method essentially gives each location
an explicit name and records the set of locations a pointer could reference at
a particular program point. This memory representation is not as rich as our
region-based memory model, which treats memory objects as first-class values
with properties such as extents and relationships to other memory regions (e.g.,
region views to capture type-casting relationships). One consequence of these
differences is that Saturn’s strictly name-based memory model does not amend
itself well to reasoning about pointer arithmetic nor array operations, both of
which are handled naturally and precisely in our region-based model (i.e., by
reasoning about the indices of ElementRegions).

Other bug finding tools like EXE [1] and DART [3] circumvent the memory
modeling problem by actually compiling and running the program being checked.
They use the run-time addresses of memory objects to distinguish them.

The closest related work to ours in the traditional program analysis field
is alias analysis. We both try to solve the similar problem: the correspondence
between expressions and memory objects. The requirements, however, are dif-
ferent.

Alias analysis for compiler optimization aims for a conservative result. It
usually computes “may” aliases. We aim to get more precise alias relation. Due to
the path sensitive character of our application, we do have more precise program
state information that enables us to get more precise alias information.

On the usage aspect, alias analysis is often used as a separate analysis pass
on the program. Then its results are stored for later use. Our memory model
is used in combination with the whole symbolic analysis of the program. The
corresponding memory regions are computed on the fly during the symbolic
analysis. There is no separate “region analysis” pass for our analysis model.



9 Conclusion

We designed a region-based memory model for path-sensitive symbolic program
analysis. In summary, the memory model has the following features which make
it more powerful and suitable for symbolic execution:

– It can handle almost all kinds C expressions, including arbitrary levels of
pointer dereferences, pointer arithmetic, composite array and struct data
types, arbitrary type casts, dynamic memory allocation, etc.

– It maps aliased lvalue expressions to the identical object without extra alias
analysis.

– It can represent various properties of memory objects: known and unknown
extent, storage class, hierarchy relation, concrete and symbolic values, etc.

The memory model has been implemented in the Clang analyzer [2]. Our
preliminary experimentation showed that it is effective for adding field sensitivity
to our static analysis tool.
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